
Planning for Street Trees: Duke Farms and Beyond May 14, 2019

Cecille, John, Eve, Eric

Goals

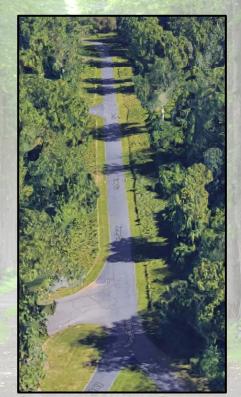
Create aesthetic tree allées

Transferability to urban settings

Increase carbon sequestration

Align with Duke Farms Stewardship Plan

Duke Farms Stewardship Plan


- Develop plant propagation and reintroduction plan
- Integrate stewardship and related programmatic goals
- Foster monitoring and research
- Engage in climate change mitigation
- Implement sustainable agricultural practices

Existing Conditions

Nursery Way

Cleared for allées

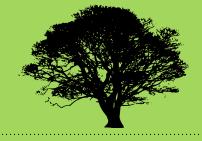
Existing Conditions

Oak Way

Allée comprising 88 red oaks Western portion has no allées, some forested areas

Existing Conditions

West Way


Allée on northern part of West Way with trees of differing size, comprising 36 trees. Southern portion has no allées, some forested areas.

Methods

- Site visit
- Discussion with Duke Farms staff
- Species selection
- Spacing considerations
- Allee design
- iTree
- Sequestration potential

Species Selection

- Environmental co-benefits: prioritizing carbon storage, but also including streamflow reduction, pollutant removal, etc.
- Resilience to disease and pests
- Resilience to climate change
- Nativity to NJ
- Duke Farms established street tree species
- Other co-benefits, including aesthetics, pollination (for flowering species)

Design-Option 1

- "Monoculture-Lite"
- 249 trees
- Species: American Sycamore, London Plane
- Benefits:
 - Traditional aesthetics
 - Visual unity (great for wedding photos)
 - Avoids "Simple Single Species Syndrome Sickness"

Design 1	Sequestration		
Nursery Way	1,347,873.8		
Oak Way	3,695,783.0		
West Way	372,195.0		
Total	5,415,851.8		

Design-Option 2

- "Mix It Up"
- 249 trees
- Species: American Sycamore, London Plane, Black Gum, Cucumber Magnolia
- Benefits:
 - Increased resilience to disease, pests
 - Visually interesting, surprising
 - Pollination (magnolia)

Design 2	Sequestration		
Nursery Way	1,198,018.4		
Oak Way	3,280,379.9		
West Way	327,621.2		
Total	4,806,019.5		

Design-Option 3

- "Best of both worlds"
- 332 trees
- Species: American Sycamore (~75-100 ft), Umbrella Magnolia (~15-30 ft)
- Benefits:
 - Resilience to disease
 - Visually interesting with formal allée elements
 - Pollination!

Design 3	Sequestration
Nursery Way	1,260,348.2
Oak Way	3,492,765.8
West Way	357,265.4
Total	5,110,379.4

Comparisons with Design for All Streets in Study Area

Design	Sequestration		
1	5,415,851.8		
2	4,806,019.5		
3	5,110,379.4		

Design Recommendation

Existing Sequestration Potential

- Oak Way: 1,271,068 Lbs.
- West Way: 850,647.1 Lbs.
- Nursery Way: 0 Lbs.

Total Sequestration: 2,121,715.10 Lbs.

Recommended Sequestration Potential

- Nursery Way (Design 1): 1,347,873.8 Lbs.
- Oak Way (Design 3): 3,492,765.8 Lbs.
- West Way (Design 1): 372,195.0 Lbs.

Total Sequestration: 5,212,834.60 Lbs.

7,344,549.70 Lbs.

Total Sequestration

Budget

*Projected Costs - First Year Analysis: 306 Trees (\$50,000 Allotted Budget)

S	Tree Cost (American Sycamore, London Plane, Cucumber Magnolia)	Transportation / Delivery Cost (50 mile sourcing - 15 truck loads at 3\$ per mile with return	Labor Hours (2 hours per tree for planting)	Labor Costs (\$25 per hour)	waterings annually -30	According to the second	Maintenance Resources / Soil Turnover (\$50 per Tree annually)	Total Cost
:	\$13,356	\$2,250	612	\$15,300	226,500 gallons	\$2,265	\$15,300	\$48,471

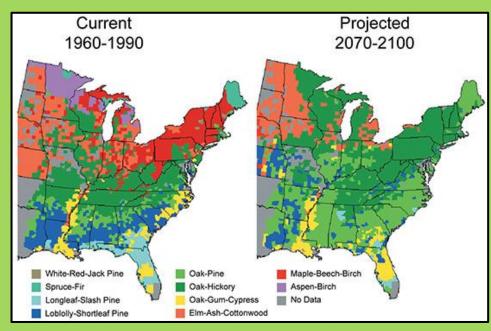
**From a survey of nursery prices:

Tree Species Type	Number of Trees	Cost per 5-6' sapling	Total Cost
American Sycamore	306	\$39.95	\$12,224.70
Cucumber Magnolia	306	\$49.95	\$15,284.70
London Plane	306	\$39.99	\$12,236.94
Black Gum	306	\$30.99	\$9,482.94
Bradford Pear (only last 25 years)	306	\$24.95	\$7,634.70
Cherry Blossom	306	\$37.00	\$11,322.00

^{*}Dat.com for trucking per mile rate, Howmuch.net for landscaping labor costs and time, Aroborday.org for tree watering recommendations, American Water for water rate **Lowes, Home Depot, Halka Nursery, Willis Orchards Co., Arbor Day.org, thetreecenter.com, fastgrowingtrees.com,

Phases of Implementation

- 1. Plan Prepare Local Sourcing Analysis
- 2. Planting Operations
- 2 Year Intensive Management Period Growth -Maintenance - Watering - Soil Turnover
- 4. Long Term Rotational Maintenance / Storm Management
- 5. Analysis and Evaluation of Resiliency, Disease / Pest Potential, Design Performance, Climate Change, and C02 Sequestration


Confronting Climate Change

<u>Limits on Species Selection</u>

- Habitat loss
- Hardiness zones
- Diversity

Future

 pest resurgence, fire, flooding, disease

Source: MassAudubon,

https://www.massaudubon.org/our-conservation-work/climate-change/effects-of-climate-change/on-natural-habitats/forests

Beyond Duke Farms

Linkages to Region

Goal: Duke Farms street trees as a resource and model for municipal street tree practice/**planning** in NJ towns

Beyond Duke Farms

<u>Crossover into</u> <u>planning practice</u>

- Understanding of co-benefits in other planning disciplines
 - Design
 - Transportation
 - Community
 - Redevelopment
 - Resiliency

Sources

Climate Change Impacts:

- Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. and Curtis-McLane. 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1: 95-111. doi:10.1111/j.1752-4571.2007.00013.x
- "Effects of Climate Change on Woods & Forests." Mass Audubon. 2019.
 https://www.massaudubon.org/our-conservation-work/climate-change/effects-of-climate-change/on-natural-habitats/forests
- Ennos, Richard A. Resilience of forests to pathogens: an evolutionary ecology perspective. 2015. Forestry: An International Journal of Forest Research, 88:1: 41-52. https://doi.org/10.1093/forestry/cpu048
- Iverson, Louis R.; Peters, Matthew P.; Prasad, Anantha M.; Matthews, Stephen N. 2019. Analysis of Climate Change Impacts on Tree Species of the Eastern US: Results of DISTRIB-II Modeling. Forests. 10(4): 302. https://doi.org/10.3390/f10040302.
- o Nowak, David J and Daniel E. Crane. 2002. Carbon storage and sequestration by urban trees in the USA, Environmental Pollution, 116:1: 381-389. https://doi.org/10.1016/S0269-7491(01)00214-7.
- David J. Nowak, Eric J. Greenfield, Robert E. Hoehn, Elizabeth Lapoint. 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178: 229-236, https://doi.org/10.1016/j.envpol.2013.03.019.
- Rains, Michael T.; Nisley, Rebecca G. 2010. Study Suggests Tree Ranges Are Already Shifting Due to Climate Change. US
 Forest Service Northern Research Station: Research Review. 11. https://www.fs.fed.us/nrs/news/review/review-vol11.pdf
- Velasquez-Manoff, Moises. "Can Humans Help Trees Outrun Climate Change?" New York Times, Apr 25, 2019. https://www.nvtimes.com/2019/04/25/climate/trees-climate-change.html.
- Tree Species Information
 - o i-Tree Species. i-Tree Software Suite 2019. Accessed April 2019.
 - Pollinator Plants Mid-Atlantic Region. 2017. Xerces Society for Invertebrate Conservation.
 - "Plants Database." United States Department of Agriculture: Natural Resources Conservation Service. https://plants.sc.egov.usda.gov/java/.
 - Zipse, William. Personal communication. 2019.
- "Urban Forests." U.S. Forest Service. Accessed April 2019. https://www.fs.fed.us/managing-land/urban-forests
- Duke Farms. Accessed April 2019. https://www.dukefarms.org/

