New Williams et al. Research on Improving Survey Inference

November 25, 2024

Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data

Abstract

Probability surveys are challenged by increasing nonresponse rates, resulting in biased statistical inference. Auxiliary information about populations can be used to reduce bias in estimation. Often continuous auxiliary variables in administrative records are first discretized before releasing to the public to avoid confidentiality breaches. This may weaken the utility of the administrative records in improving survey estimates, particularly when there is a strong relationship between continuous auxiliary information and the survey outcome. In this paper, we propose a two-step strategy, where the confidential continuous auxiliary data in the population are first utilized to estimate the response propensity score of the survey sample by statistical agencies, which is then included in a modified population data for data users. In the second step, data users who do not have access to confidential continuous auxiliary data conduct predictive survey inference by including discretized continuous variables and the propensity score as predictors using splines in a Bayesian model. We show by simulation that the proposed method performs well, yielding more efficient estimates of population means with 95% credible intervals providing better coverage than alternative approaches. We illustrate the proposed method using the Ohio Army National Guard Mental Health Initiative (OHARNG-MHI). The methods developed in this work are readily available in the R package AuxSurvey.

Keywords: Bayesian predictive inference; Rstan; continuous auxiliary variables; generalized additive model; inclusion propensity; poststratification.

Citation

Williams SZ, Zou J, Liu Y, Si Y, Galea S, Chen Q. Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data. Stat Med. 2024 Nov 18. doi: 10.1002/sim.10270. Epub ahead of print. PMID: 39557420.

Recent Posts

NJSPL Report: Analyzing the Use and Equity of ARPA Funds

Report Release: Analyzing the Use and Equity of ARPA Funds in NJ Local Governments and Beyond New Jersey State Policy Lab The American Rescue Plan Act’s Coronavirus State and Local Fiscal Recovery Funds (ARPA-SLFRF) represent a historic $350 billion investment to...

Dr. Grafova Presented Posters from the VSR Research

Dr. Irina Grafova recently returned from the AcademyHealth Research Meeting in Minneapolis, where she had the opportunity to present two posters from the Virtual Schwartz Rounds emotional support program for nurses, run by the New Jersey Nursing Emotional Well-being...

Heldrich Report: Analysis of NJ Life Sciences, Tech Sectors

The Heldrich Center, in conjunction with the New Jersey Economic Development Authority (NJEDA), is pleased to share a new workforce analysis of the life sciences and technology sectors in New Jersey, with a particular emphasis on the sectors’ intersection with...

Restrepo-Mieth Researches Tree Inventories in Galápagos, Ecuador

Who wants a tree inventory and why? The politics of inventorying urban forestry in Galápagos, Ecuador Abstract Trees make significant contributions to the urban experience by providing ecosystem services and aesthetic value. Considering these contributions, cities are...

NJSPL: Georeferencing Historical Maps for Geospatial Analysis

New Jersey State Policy Lab, Jonathan DeLura Our project to create a dataset of historical water bodies in New Jersey began by finding maps of historical water bodies. Two atlases were used to locate historical water bodies in New Jersey. The first was Atlas of the...